M. Math. Ist Year
Midsemestral Examination
Complex Analysis
Instructor - B. Sury
February 19, 2024 - Be BRIEF.

Q 1. Determine $\int_{0}^{2 \pi} e^{e^{i \theta}-i \theta} d \theta$.

OR

Q 1. Recall that the complex line integral with respect to $\overline{d z}$ over a piece smooth path $C: z=\gamma(t)$ is defined as $\int_{C} f \overline{d z}:=\overline{\int_{C} \bar{f} d z}$. If p is a polynomial, evaluate $\int_{C} p \overline{d z}$, where C is the circle $\left|z-z_{0}\right|=r$.

Q 2. Consider the power series $f(z):=\sum_{n \geq 0} c_{n} z^{n}$ where $c_{0}=1, c_{1}=$ $-1, c_{n+2}=\frac{-4 c_{n+1}+c_{n}}{3}$ for all $n \geq 0$. Write $f(z)=\frac{p(z)}{q(z)}$, where p, q are polynomials. Find the radius of convergence of f.
Hint. Does $q(z)=z^{2}-4 z-3$ work?

OR

Q 2. Consider the power series $f(z):=\sum_{n \geq 1} \frac{z^{n}}{n^{\log n}}$ and the series $g(z)$ obtained by term-by-term differentiation 2024 times. Prove that the series for g converges absolutely for $|z| \leq 1$.
Hint. For $|z|=1$, get an upper bound for the n-th coefficient of g as $\frac{1}{n^{2}}$ for large n onwards.

Q 3. Determine the unique function u which is harmonic on an infinite vertical strip $[s, t] \times(-\infty, \infty)$ and, on the vertical lines $\operatorname{Re}(z)=s$ and $\operatorname{Re}(z)=t$, it takes constant values 5 and 10 respectively.

OR

Q 3. Let $f \in \operatorname{Hol}(D)$, where D is the open unit disc. If $|f(z)| \leq M$ for all $z \in D$, prove that $\left|f^{\prime}(z)\right| \leq \frac{M}{1-|z|}$ for all $z \in D$.
Hint. For $a \in D$, show $\left|f^{\prime}(a)\right| \leq M /(t-|a|)$ for each $|a|<t<1$.

Q 4. If f is a continuous function on \mathbb{C} which is holomorphic both on the upper half-plane and the lower half-plane, prove that f is entire.
Hint. Show that the integral of f over any rectangular contour R with sides $x=a, y=-b<0, x=c, y=d>0$ is zero, as follows. Take R_{1} be the rectangle with sides $x=a, x=c, y=d, y=\epsilon>0$ which is above the x-axis. Consider similarly R_{1}^{\prime} below the x-axis whose sides are $x=a, x=c, y=-b, y=-\epsilon<0$. Compare the sums of the integrals over R_{1} and R_{1}^{\prime} to the integral over R, as $\epsilon \rightarrow 0$. Just quote Morera's theorem then.

OR

Q 4. Show that a non-constant polynomial $p=\sum_{i=0}^{n} c_{i} z^{i}$ with complex coefficients has a zero, necessarily using the following idea. If p has no zeroes, observe that the integral $\int_{0}^{2 \pi} \frac{d \theta}{q\left(\theta+\theta^{-1}\right)}$ does not vanish, where $q(z)=\left(\sum_{i} c_{i} z^{i}\right)\left(\sum_{i} \overline{c_{i}} z^{i}\right)$. Reinterpret this real integral as a contour integral $\int_{|z|=1} \frac{f(z) d z}{g(z)}$ where f, g are polynomials over \mathbb{C} and g has no zeroes. Use Cauchy's theorem to deduce a contradiction to the non-vanishing of q.

Q 5. Prove that there is no conformal map S from the punctured open unit disc $A_{0,1}=\{z: 0<|z|<1\}$ ONTO an annulus $A_{1, r}=\{z: 1<|z|<r\}$ for some $r>1$.
Hint. For any possible S, show 0 is a removable singularity, and apply the open mapping theorem to the holomorphic function T that is an extension of S to the open unit disc.

OR

Q 5. Find an injective, holomorphic function from the open unit disc D to the set $D \backslash\{[0,1)\}$.
Hint. Think of composing a map to the lower half-plane $\{z: \operatorname{Im}(z)<0\}$ and a map from the latter to $D \backslash\{[0,1)\}$.

Q 6. Let $f: D \rightarrow \mathbb{C}$ be a function such that f^{2}, f^{3} are in $\operatorname{Hol}(D)$, where D is the open unit disc. Prove that $f \in \operatorname{Hol}(D)$.
Hint. If z_{0} is a zero of f, write $f^{2}=\left(z-z_{0}\right)^{r} g, f^{3}=\left(z-z_{0}\right)^{s} h$ where g, h do not vanish at z_{0}. What is the relation between r and s ?

OR

Q 6. Consider the "truncated exponential polynomial" $E_{n}(z)=\sum_{k=0}^{n} \frac{z^{k}}{k!}$ for any $n \geq 2$. If z_{1}, \cdots, z_{n} are the roots of E_{n}, show that $\sum_{i=1}^{n} 1 / z_{i}^{2}=0$. State (no need to prove) what other powers z_{i}^{-d} can be taken instead of $1 / z_{i}^{2}$ above.
Hint. Show first that z_{i} 's must be distinct. Then, apply Cauchy's theorem for $z^{n-2} / E_{n}(z)$ on a sufficiently large circle.

